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, where ε(u) is the eccentricity of 

vertex u. In this paper we compute these topological indices for fullerene graphs. 
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1. Introduction 
 

By a graph means a collection of points and lines 

connecting a subset of them. The points and lines of a 

graph also called vertices and edges of the graph, 

respectively. If e is an edge of G, connecting the vertices u 

and v, then we write e = uv and say "u and v are adjacent". 

A connected graph is a graph such that there is a path 

between all pairs of vertices. The fact that many 

interesting graphs are composed of simpler graphs that 

serve as their basic building blocks prompts and justifies 

interest in the type of relationship that exist between 

various graph-theoretical invariants of composite graphs 

and of their components. The composite graphs considered 

here arise from simpler graphs via several binary 

operations. Such operations are sometimes called graph 

products, and the resulting graphs are also known as 

product graphs.  

Let G be a graph on n vertices. We denote the vertex 

and the edge set of G by V(G) and E(G), respectively. For 

two vertices u and v of V(G) we define their distance d(u, 

v) as the length of a shortest path connecting u and v in G. 

For a given vertex u of V(G) its eccentricity ( )u  is the 

largest distance between u and any other vertex v of G. 

Hence, ( )( ) max ( , )v V Gu d u v . The minimum and 

maximum eccentricity over all vertices of G are called the 

radius and diameter of G and denoted by R(G) and D(G), 

respectively. The eccentric connectivity index ( )G  of a 

graph G is defined as 
( )

( ) ( ) ( )
u V G

G d u u


   , where 

d(u) denotes the degree of vertex u in G, i. e., the number 

of its neighbors in G  [1-7]. The total eccentricity index of 

G is defined as 
( )

( ) ( )
u V G

G u


   .  

The Zagreb indices have been introduced more than 

thirty years ago by Gutman and Trinajestic
 
[8]. They are 

defined as: 

 
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Now we define a new version of Zagreb indices as 

follows [9]: 
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It is easy to see that for every connected graph G, 
*

1 ( ) ( )M G G .  

 
 
2. Geometric – arithmetic index 
 

A class of geometric–arithmetic topological indices 

may be defined as 2
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
, where Qu is 

some quantity that in a unique manner can be associated 

with the vertex u of the graph G [10]. The first member of 

this class was considered by Vukicević and Furtula [11], 

by setting Qu to be the 
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where degree of vertex u denoted by d( )u . The second 

member of this class was considered by Fath-Tabar et al. 

[12] by setting Qu to be the number nu = nu (e|G) of 

vertices of G lying closer to the vertex u than to the vertex 

v for the edge uv of the graph G: 
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The third member of this class was considered by 

Zhou et al. [13] by setting Qu to be the number mu = mu 
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(e|G) of edges of G lying closer to the vertex u than to the 

vertex v for the edge uv of the graph G: 
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The fourth member of this class was defined by 

Ashrafi et al. [14] as follows: 
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where ε( )u  denotes to the eccentricity of vertex u.  

A fullerene graph is a cubic 3-connected plane graph 

with pentagonal faces and hexagonal faces. Let Fn be a 

fullerene graph with n vertices. By the Euler formula one 

can see that Fn has 12 pentagonal and n/2 – 10 hexagonal 

faces [15,16]. By a Hamiltonian fullerene, means a 

fullerene with a Hamiltonian cycle.  

Since every fullerene graph F is 3 regular, so GA(F) = 

|E(F)|. In other words, for two distinct isomers of a 

fullerene F of order n ≥ 26, such as F1 and F2 GA(F1) = 

GA(F2), while they have distinct GA4. The similar 

conditions hold for Zagreb indices, e. g for two distinct 

isomer of fullerenes F1 and F2 with |V(F1)| = |V(F2)|, one 

can see Mi(F1) = Mi(F2) while Mi
*
(F1) ≠ Mi

*
(F2), i = 1, 2. 

Throughout this paper our notation is standard and 

mainly taken from standard books of graph theory such as 

[17, 18] and [19 – 46]. All graphs considered in this paper 

are simple and connected. 

 
 
2. Main results and discussion 
 

The aim of this section is to obtain some bounds of 

GA indices of fullerene graphs. At first, we must compute 

GA4(G), for some well-known class of graphs.  

Example 1. Let Kn denotes the complete graph on n 

vertices. Then for every ( )nv V K , d( ) 1v n   and 

( ) 1v  . This implies 
4
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Example 2. Let Cn denotes the cycle of length n. If n 

is even then for every i, then i-th row of distance matrix of 

Cn is 1,2,...,0,...,  ( -1) / 2,  / 2,  ( -1) / 2,...,2,1

i

n n n . When n 

is odd then the it is equal to 

1,2,...,0 ,..., ( -1) / 2, ( -1) / 2,...,2,1.

i

  n  n Hence, 
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Example 3. Let Sn be the star graph with n + 1 

vertices. The central vertex is denoted by x and others 

vertices by u1, u2, …, un. Then for every 1 ≤ i, j ≤ n, we 

have d(x, ui) = 1 and d (ui , uj) = 2. So, 





)(

4
3

22

3

22
)(

GEuv

n nSGA .  

Example 4. Consider the fullerene graph C20 depicted 

in Fig. 1. By using distance matrix one can see, for every 

vertex x, ( ) 5x  . This implies GA4(C20) = 30. Since 

every fullerene graph F is 3 regular, then ( ) 3 ( ).F F    

In other words, 
20 20( ) 3 ( ) 3 5 20 300C C       .   

 

 
 

Fig. 1. The fullerene graph C20. 

 
Because C20 is the smallest fullerene, for every vertex 

x in fullerene graph F, ( ) 5x  and so ( ) 45 / 2F n  . 

On the other hand, ( ) 3 ( )F F    if and only if 

2 2( ) 9 ( )F F   . This implies: 

 
2 2 2 *

2
( ) ( )

( ) [ ( )] ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) 75 .
u V F u V F u v

F u u u v F M F F n
  

               
 

Let : ( )t F  , then t
2
 – t -75n ≥ 0. This non – 

equality hold if and only if (1 300 1) / 2t n   . Thus 

( ) 3(1 300 1) / 2F n     and so, the following Theorem 

is proved: 

Theorem 5. For a fullerene graph F with n vertices, 

an upper bound for eccentric connectivity index is as: 

( ) 3(1 300 1) / 2F n    . 

In this section, we discuss about Hamiltonian 

fullerene graphs. It has been conjectured that every 

fullerene, is Hamiltonian [47]. 

Theorem 6. Let G be a Hamiltonian graph, then 

2

* 2( ) ( ( ))M G G  . 

Proof. Without less of generality for every edge e = 

uv, let ( ) ( )u v   . Thus 

2

2* 2 2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ( )) ( ( ))
uv E G u V G u V G

M G u v u u G
  

           . 

Lemma 7. Let G be a Hamiltonian graph. Then for 

every vertex ( )v V G , ( ) [ / 2]v n  . 

Proof. Suppose u be an arbitrary vertex of G. Since u 

and v are on a Hamiltonian cycle, then d(u, v) ≤ [n/2]. This 

completes the proof. 

As a result of Lemma 7, we can deduce the following 

Theorems: 



A note on geometric – arithmetic index of fullerene 

 

159 

Theorem 7. Let F be a Hamiltonian fullerene graph. 

Then 

 

( ) 9 [ / 2] / 2.F n n   

 

Theorem 8. Let F be a Hamiltonian fullerene graph. 

Then 

 

( ) 2 ( ).F F    

 
Proof. A Hamiltonian graph has a Hamiltonian cycle. 

Thus for every vertex u in V(G), d(u) ≥ 2. 

Theorem 9. Let F be a Hamiltonian fullerene graph. 

Then 

 

1

*( ) 3 [ / 2]M F n n  and 
2

* 2( ) 3 [ / 2] / 2M F n n . 
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